Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Orthopaedics ; (12): 426-436, 2022.
Article in Chinese | WPRIM | ID: wpr-932851

ABSTRACT

Objective:To evaluate whether pelvic fixation is needed in patients undergoing posterior lumbosacral hemivertebra (LSHV) resection and long fusion.Methods:All 32 adult spinal deformity patients with posterior hemivertebra (HV) resection and long segment fixation treated from April 2005 to August 2019 were analyzed retrospectively, including 12 males and 20 females with a mean age of 32.9±8.8 years. According to the state of coronal balance distance (CBD), there were 15 cases of type A (preoperative CBD≤ 30 mm), 1 case of type B (preoperative CBD>30 mm and C 7 plumb line offset to the concave side), and 16 cases of type C (preoperative CBD>30 mm and C 7 plumb line offset to the convex side). The clinical and imaging data before operation, immediately after operation and at the last follow-up were collected, and the short-term and long-term complications related to operation were recorded. The improvement of Cobb angle and coronal balance of primary curve and compensatory curve were evaluated on the whole spine frontal and lateral X-ray films, and the change of coronal balance type after operation was evaluated. According to the mode of distal internal fixation, the patients were divided into two groups: PF group (pelvic fixation): distal fixation to iliac or sacroiliac; NPF group (non-pelvic fixation): distal fixation to L 5 or S 1. Results:All 32 patients were followed up with an average time of 3.9±2.6 years (range 2-11 years). The Cobb angle of primary curve in PF and NPF groups were 42.6°±13.5° and 41.3°±10.9° respectively before operation, and corrected to 13.1°±5.4° and 17.7°±5.8° respectively after operation. It maintained at 13.4°±5.1°and 18.5°±6.7° in the two groups at the last follow-up, respectively ( FPF=32.58, FNPF=28.64, P<0.001). The correction rates were 69.3%±11.8% and 57.6%±10.3%, respectively ( t=2.14, P=0.012). The compensatory curves of in the two groups were corrected from 54.9°±14.8° and 46.8°±13.6° before operation to 17.3°±9.6° and 15.4°±8.4° after operation. It also maintained at 18.5°±8.8°and 17.6°±9.5° in the two groups at the last follow-up, respectively ( FPF=42.97, FNPF=38.56, P<0.001). The correction rates were 68.4%±16.7% and 67.2%±14.9%, respectively ( t=0.17, P=0.849) in the two groups. In PF group, the primary and compensatory curve were similar (69.3%±11.8% vs. 68.4%±16.7%, t=0.15, P=0.837), while the correction rate of compensatory curve in NPF group was significantly higher than that of the primary curve (67.2%±14.9% vs. 57.6%±10.3%, t=2.13, P=0.013). Coronal decompensation occurred in 12 patients (12/32, 37.5%). The CBD in PF and NPF groups was corrected from 33.3±11.2 mm and 28.8±8.1 mm preoperatively to 18.5±3.5 mm and 27.1±6.8 mm postoperatively, respectively, and it showed no significant change at the last follow-up ( FPF=41.61, P<0.001; FNPF=0.38, P=0.896). While the CBD in PF group was significantly better than that in NPF group ( t=3.23, P=0.002; t=2.94, P=0.008). The incidence of coronal decompensation in PF group was 0%, which was significantly lower than 50% (12/24) in NPF group (χ 2=6.40, P=0.014). In addition, 6 cases in PF group were type C coronal decompensation before operation, and the coronal balance was corrected to type A after surgery (100%). Among 10 patients with type C coronal decompensation in NFP, 4 (40%) patients returned to type A after operation, and the difference was statistically significant (6/6 vs. 4/10, χ 2=5.76, P=0.034). Conclusion:Coronal decompensation (12/32, 37.5%) is not rare in patients after posterior LSHV resection and long fusion. Attention should be paid to the match of the corrections between lumbosacral deformity and compensatory curve, which is of great significance in coronal balance reconstruction. Pelvic fixation is helpful to reduce the incidence of postoperative coronal decompensation, especially for the type C patients.

2.
Chinese Journal of Orthopaedics ; (12): 1673-1682, 2021.
Article in Chinese | WPRIM | ID: wpr-910760

ABSTRACT

Objective:To evaluate the safety and efficacy of one-stage posterior-only jumping hemivertebra (HV) resection combined with respective short fusions in the treatment of congenital scoliosis (CS) caused by multiple HVs.Methods:All of 13 consecutive patients with multiple HVs treated surgically from January 2010 to December 2017 were retrospectively reviewed, including 4 males and 9 females with a mean age of 3.7±1.2 years. One child had 4 HVs, and the rest had 2 HVs. The responsible HVs causing local scoliosis/kyphosis deformity or coronal plane deviation were selected as the target of resection. The distal HV was removed firstly and then the proximal one was resected; both of the fixation vertebraes were horizontalized during surgery. The clinical and imaging data of the children before the initial operation, immediately after the operation and at the latest follow-up were collected, and the short-term and long-term complications related to surgery were recorded. The data were evaluated on the whole-standing spine anteroposterior and lateral films, including the corrections of proximal and distal main curves, coronal balance, local kyphosis, and the improvement of spinal growth height (upper and lower internal fixation length, T 1-S 1 length). At the same time, the re-progression of coronal and sagittal deformities of the spine during growth was recorded (coronal decompensation: emerging postoperative curve progression more than 20°; kyphosis progression: kyphosis aggravation between upper and lower internal fixation more than 40°) and internal-fixation-related complications (screw cutting, screw malposition) were recorded. Results:Dual HVs were resected in each child, of which 8 (61.5%) were located on contralateral side of the spine, and 5 (38.5%) were located on ipsilateral side of the spine. The follow-up time was 6.2±3.3 years (range 2.0-10.5 years) after surgery. The Cobb angles of proximal and distal main curves were 36.7°±11.8° and 35.2°±7.8° respectively before surgery and were corrected to 9.7°±6.6° and 6.1°±4.1° respectively after surgery ( F=31.249, F=93.83, P< 0.001) ( t=6.888, t=10.954, P<0.001), and the correction rates was 73.6%±19.6% and 82.7%±11.7%, respectively. They were maintained at 14.3°±5.4° and 8.0°±4.6° at the latest follow-up, showing the correction rates loss of 15.8%±26.9% and 6.9%±7%, respectively. The coronal balance improved from 17.2±14.8 mm pre-operatively to -0.2±15.7 mm postoperatively ( t=2.703, P=0.008), and it remained at 0±18.4 mm at the final follow-up ( F=4.137, P=0.024). The T 1-S 1 length was corrected to 273.8±27.3 mm postoperatively, slightly increased compared with pre-operation 256.3±24.0 mm, ( t=0.680, P=0.527), and significantly increased to 333.2±33.4 mm at the latest follow-up ( t=2.986, P<0.001; F=6.704, P=0.003). Seven patients had local kyphosis before operation, which was significantly improved from 32.2°±13.6° to 6.1°±9.8° with a correction rate of 93.4%±27.0% after surgery ( t=3.355, P=0.004), which showed no significant loss of correction at the latest follow-up (5.4°±10.4°) ( F=11.187, P=0.002). Six patients (46.2%) developed coronal decompensation (Curve magnitude >20 °), with an average of 21.7°±1.9°. Two cases (15.4%) had progressive kyphosis between the thoracic regional internal fixations at 3 months after surgery, which were 68° and 58° respectively. After bracing, both coronal decompensation and sagittal kyphosis were improved. At the last follow-up, the coronal decompensation was improved to 14.7±8.9° and the kyphosis was alleviated to 55° and 46°, respectively. Conclusion:Posterior-only skipping hemivertebra resection and short fusion is a safe, effective procedure yielding significantly improvement of the growth imbalance and reginal spinal deformities of CS with multiple HVs. The mid-term follow-up results showed that the progress of the scoliosis was common during the growth period, which could be further controlled by supplementary brace treatment.

SELECTION OF CITATIONS
SEARCH DETAIL